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Abstract

In this paper the belt-drive model using an absolute nodal coordinate formulation is presented. Using this approach the

damping forces are usually neglected and only the elastic forces are taken into account. The aim of this paper is to

introduce a damping mechanism into the belt-drive model and to verify it against experimental data. Different damping

mechanisms are proposed for the damping of the longitudinal and bending deformations and several experiments were

conducted in order to obtain the damping properties. Good agreement between the numerical result and the

experimentally obtained data was found. Finally, the applicability of the belt-drive model was presented in a comparison

with the pinned–pinned beam model.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Belt drives are commonly used to transmit power in many engineering applications, such as automotive
engines, industrial machines, etc. Due to their simple installation and low maintenance, together with an
ability to absorb shocks, they are frequently used instead of chain or geared transmission systems. However,
they can exhibit complex dynamic behaviors, such as the transverse vibrations of the belt spans, tension
fluctuations, sliding of the belt over the pulley, etc. All this phenomena impact the belt life and also the
acoustic comfort. It is, therefore, very important to find an effective and validated approach for predicting the
dynamic response of such belt drives. The literature regarding belt drives is extensive; in Ref. [1] a thorough
literature review up to 1992 can be found. In addition, there are numerous studies dealing with rotational
responses [2–5], the transverse vibrations of belt spans [6–8,26], etc.

Leamy and Wasfy [9,10] proposed a general, dynamic finite-element model, where the belt is modelled using
truss elements. The finite-element model is able to predict the belt creep over the pulley and the belt-drive
vibrations. Using the absolute nodal coordinate formulation (ANCF), originally proposed by Shabana [11],
the authors in Ref. [12] developed a more general planar model of a belt drive. The belt was modelled using a
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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two-dimensional shear deformable beam element that accounts for both the bending and longitudinal
stiffness. An extended formulation for three-dimensional belt drives was presented in Ref. [13]. Most recently,
Čepon and Boltežar [14] presented a belt-drive model using ANCF with detailed contact formulation between
belt and pulley. The belt–pulley contact was formulated as linear complementarity problem (LCP), using the
discontinuous Coulomb friction law to model frictional forces.

The researchers, using the ANCF for the belt-drive modelling, usually did not account for any dissipative
mechanism except in Ref. [14] where the damping mechanism for longitudinal deformations is proposed. Belt
materials such as plastic, metal or ceramic-reinforced composite materials and polymer materials do not obey
Hooke’s law, but usually exhibit viscoelastic behavior [15]. The ANCF is quite recent, so it has generated little
literature on damping [16]. Takahashi et al. [17] introduced a Rayleigh proportional damping matrix to a
beam model, assuming that the longitudinal deformations within each flexible body are small. The
proportional damping matrix is obtained as a linear combination of a constant-mass and constant-bending
stiffness matrix. This model was also used in Refs. [18,19], where the results were also checked against
experimental data. With this damping model the rigid-body motions are also damped. However, the damping
of longitudinal deformations cannot be formulated in this way due to the nonlinear structure of the
longitudinal stiffness matrix, even when small deformations are considered. The internal damping force
model, for the ANCF, based on the continuum mechanics approach, is presented in Ref. [16]. This model
dissipates the energy only when the system experiences some deformations, whereas the rigid-body motions
are not damped.

In this paper we have used the ANCF to model belt drives with a poly-V belt. Additionally, we have
included a damping mechanism into the formulation. The damping mechanism is a combination of
proportional and internal damping models. For the damping of the bending deformations, Rayleigh
proportional damping is proposed, as presented in Ref. [17]. For longitudinal deformations the internal
damping mechanism adopting viscoelastic material is proposed. To identify the damping characteristics and
other belt-material properties, several experiments were performed. The damping mechanism is additionally
included into the belt-drive model and a comparison between the simulations and the experiments is also made
in order to validate the proposed belt-drive model. Although in this study a non-operating two-pulley belt
drive is proposed for identifying the belt-material properties, the presented belt-drive model is general. With
the proposed contact formulation between the belt and the pulley it is possible to simulate belt drives with
several pulleys, and even tensioner pulleys in arbitrary operational conditions, see Ref. [14].

This paper is organized as follows. In Section 2 the model of the belt drive with the formulation of the
damping forces is presented. Section 3 presents the contact formulation between the belt and the pulley. In
Section 4 the identification of the damping and the other belt-material properties are presented. Next, a
comparison between the simulations and the experiments is given. Finally, in Section 5, the conclusions
are drawn.
2. Formulation of belt-drive model using the ANCF

The belt is modelled as a system of planar beam elements, using flexible multibody dynamics. An ANCF is
proposed, which can be used in a large rotation and deformation analysis of flexible bodies that undergo
arbitrary displacements. The two-dimensional beam element is based on the element originally proposed by
Berzeri and Shabana [20]. In contrast to the study presented in Ref. [12], this element does not include a shear
deformation. However, here we have additionally included a dissipative mechanism in the belt model. The
presented damping model is a combination of an internal damping model and Rayleigh proportional
damping. The internal damping-force model is based on the continuum mechanics approach, as presented in
Ref. [16] for three-dimensional beams and plates. As is the case in this study, the two-dimensional beam
element is adopted for the belt model, but the formulation of the damping matrix is simpler. For this reason
the derivation of the elastic and damping forces is presented in more detail. A viscoelastic belt material that
obeys the Kelvin–Voigt model is described by the following constitution relation [15]:

slðx; tÞ ¼ E�lðx; tÞ þ c
@�lðx; tÞ

@t
, (1)
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where sl is the longitudinal distributed stress, E is Young’s modulus, c is the viscoelastic damping factor and �l

is the Lagrangian strain:

�l ¼
1

2
ðr0Tr0 � 1Þ; r0 ¼

dr

dx
; r ¼ SðxÞej. (2)

The vector r defines the coordinates of an arbitrary point on the beam axis, the matrix SðxÞ is the global shape
function, and ej is the vector of the element nodal coordinates belonging to the element j. The virtual work due
to the elastic and dissipative forces can be written as follows:

dW l ¼

Z
V

sld�l dV , (3)

where d�l is the virtual change of the longitudinal strain and V is the volume. Assuming that the cross-section
A is constant and the material is isotropic, the virtual work due to the longitudinal deformation is given as

dW l ¼ EAejT
Z L

0

�lSL dxdej þ cAejT
Z L

0

@�l

@t
SL dxdej, (4)

where

�l ¼
1

2
ðejTSLe

j � 1Þ; d�l ¼
@�l

@ej
dej ¼ ejTSLdej ; SL ¼ S0TS0. (5)

Here, dej is the virtual change of the element’s generalized coordinates and L is the length of the belt element.
The vector of generalized forces due to the longitudinal deformation associated with the element j can be
written as [14]

Q
j
l ¼ ðK

j
l þ C

j
lÞe

j ; K
j
l ¼ EA

Z L

0

�lSL dx; C
j
l ¼ cA

Z L

0

@�l

@t
SL dx, (6)

where K
j
l and C

j
l are the nonlinear longitudinal stiffness and damping matrices. The virtual work accounting

for the bending moment can be rewritten as

dW M ¼

Z L

0

Mdkdx, (7)

where I is the moment of inertia of the beam’s cross-section, k is the curvature of the beam and M is the
bending moment:

M ¼ EIkþ cI
@k
@t

. (8)

Assuming small, longitudinal deformations, the curvature of the beam can be simplified as follows:

k ’
d2r

dx2

����
����. (9)

Taking into account only the elastic forces and using Eq. (9) the vector of the generalized bending forces takes
the simple form

Q
j
M ¼ K

j
Mej ; K

j
M ¼ EI

Z L

0

S00TS00 dx, (10)

where K
j
M is the constant-bending stiffness matrix. The derivation of the bending damping matrix from Eq. (7)

is tedious and the expressions in the resulting matrix are long and highly nonlinear. This results in longer
computation times, which lead to a significantly increased computation time for the entire simulation. In order
to avoid the computing of the nonlinear bending matrix, Rayleigh proportional damping is used to formulate
the damping of the bending deformations. The constant-mass matrix M

j
B and the constant-bending stiffness

matrix K
j
M are used to formulate the constant Rayleigh damping matrix for the bending deformation as [17]

Cj
¼ aMj

B þ bKj
M . (11)
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The computation of Rayleigh’s parameters a and b is explained in Section 4.2.3. With this procedure the rigid-
body motions in the element are also damped. However, it can be demonstrated that Rayleigh proportional
damping has an influence mainly on the damping of the bending deformations and a small influence on the
damping of longitudinal deformations. Finally, we can see that for the damping of longitudinal deformations
the internal damping model is used, and for the damping of bending deformations, Rayleigh proportional
damping is applied. Two different damping mechanisms for longitudinal and bending deformations in the belt
model are actually justified, because the belt is a composite and the damping properties in the longitudinal and
transverse directions may differ.

Taking into account the presented damping mechanisms, the equation of motion for the belt segment j can
be written as

M
j
B €e

j
þ ðaMj

B þ bKj
M Þ_e

j þ ðK
j
l þ C

j
l þ K

j
MÞe

j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�Q

j

f

¼ Q
j
eB. (12)

The system of the equations of motion, including all the beam elements in the belt and the constraint
equations describing the connectivity constraints, can be written as

MB CT
eB

CeB 0

" #
€e

kB

( )
¼

Qf þQeB

QdB

" #
, (13)

where MB is the constant-mass matrix of the belt [11], CeB is the Jacobian of the constraint equations, kB is the
vector of the Lagrange multipliers. The vector QeB is the generalized force vector that includes external forces,
Qf is the generalized force due to the stiffness and damping forces and the vector e ¼ fe1; . . . ; enBgT includes
the generalized coordinates of all the belt elements. Vector QdB is obtained through differentiation of
the constraints:

QdB ¼ �
@ðCeB _eÞ

@e
_e. (14)

The pulley is modelled as a rigid cylinder, and it is connected to the ground by the revolute joint. The
equations of motion for all the pulleys in the system can be written in a similar form as Eq. (13). All the
equations of motion for the belt and the pulleys are then put together and solved simultaneously, taking into
consideration the contact forces between the belt and the pulley.

3. Contact formulation between the belt and the pulley

In a belt drive, the belt is constrained to move over the surface of the pulley. Although the aim of this study
is to identify the belt-material properties on a non-operating belt drive, the presented contact model is also
valid for operational belt drives. Both the normal reaction force FN and the tangential friction force F T are
generated when the belt element contacts the pulley’s surface. In this study we have adopted the belt–pulley
contact formulation as presented in Ref. [14].

Each belt element has five possible contact points, which are equally spaced along the length of the element.
The normal reaction forces of each contact point are computed using the penalty method:

Fi
N ¼ KPgi

N þ CP _g
i
N , (15)

where gi
N is the penetration of the contact point i on the belt segment into the pulley. Similarly, _gi

N denotes the
penetration velocity of the contact point i in the normal direction, see Fig. 1, and KP and CP are penalty
parameters. In the tangential contact direction we use the representation of Coulomb’s friction law on the
acceleration level:

sticking: jFi
T jom0F

i
N ¼) j €gi

T j ¼ 0;

sliding: jFi
T j ¼ m0F

i
N ¼) j €gi

T j40;

)
i 2 IH , (16)

where m0 is the coefficient of friction, the set IH contains all possible sticking contacts and €gi
T is the relative

acceleration in tangential direction. In order to compute the possible sticking forces the contact problem in the
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Fig. 1. Belt–pulley contact formulation.
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tangential direction has to be formulated as an LCP. To formulate the LCP in the tangential direction the
proposed method in Ref. [21] can be applied. The resulting LCP is in the following standard form:

y ¼ Axþ b; yX0; xX0; yTx ¼ 0, (17)

and it can be solved using, for example, the Lemke algorithm [22]. From the computed contact forces the
generalized accelerations of the belt-drive system can be determined. Finally, generalized coordinates can be
obtained from an integration, using, for example, the fourth-order Runge–Kutta integration scheme.

4. Investigation on the belt-material properties

In this section the methods for identifying the damping and stiffness properties of the belt material are
presented. A poly-V belt (5pk1200) was examined by using two different experimental setups in order to
obtain the material properties in the longitudinal and transverse directions. The friction coefficient between
belt and pulley is m0 ¼ 1:2. Two different experimental setups were considered in order to obtain the material
properties in the longitudinal and transverse directions. In both cases the free and forced responses were
investigated.

4.1. Longitudinal direction

In order to determine experimentally the belt-material properties in the longitudinal direction the method
presented in Ref. [23] is proposed. The belt is suspended to the rigid frame at one end and, at the other end, to
the mass, as shown in Fig. 2(a). The system can be idealized as a weight attached to a spring and a damper
mounted in parallel, see Fig. 2(b). The longitudinal excitation of the belt is made with a shock hammer. From
the damped free response of the system the resonant frequency and the damping ratio can be determined.
First, the experimentally obtained natural frequencies and the corresponding damping ratio can help
determine the belt’s longitudinal stiffness EA and the viscoelastic damping property cA using the following
equations:

EA ¼ o2
0mL; cA ¼ 2dmLo0, (18)

where m is the mass of the weight, L is the length of the belt segment, o0 is the measured natural frequency and
d is the measured damping ratio. Damping in the longitudinal direction is also affected by the Rayleigh
damping model as it also damps rigid-body motions. However, it can be demonstrated that for the values of
a and b that are typical for the investigated poly-V belt, the damping of the longitudinal deformations is
negligible.

In Table 1 the measured natural frequencies and damping ratios for different lengths of belt segment are
presented. The computed belt-material properties in the longitudinal direction are determined per individual
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Fig. 2. Longitudinal damping and stiffness measurement: (a) experimental setup; (b) analytical model.

Table 1

Measured modal parameters in the longitudinal direction.

L (m) m (kg) f 0 (Hz) d EA (N/rib) cA (N s/rib)

0.2 66.4 16.9 0.007 3� 104 4

0.3 66.4 13.7 0.0065 2:9� 104 4.5

0.39 66.4 12.5 0.005 3:2� 104 3.8

Average 3� 104 4.1
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rib. The stiffness and the damping characteristics differ with the length of the belt specimen and with the mass
of the weight. However, the influence of the weight mass on the stiffness and damping properties is
considerably smaller than the influence of the belt specimen length. This was already reported in Ref. [24] and
is mainly the effect of the belt clamping at the ends.

In order to verify the flexible, multibody belt model in the longitudinal direction, the experimental setup
presented in Fig. 3(a) is proposed. The weight that is clamped to the belt is excited with the shaker. The
conventional frequency–response function (FRF) estimator H1ðoÞ is used:

H1ðoÞ ¼
SfxðoÞ
Sff ðoÞ

, (19)

where SfxðoÞ is the cross-input–output spectrum and Sff ðoÞ is the input auto-spectrum. The simulated FRF is
compared with the experimentally obtained FRF. The simulated FRF is obtained using the flexible multibody
model presented in Fig. 3(b). Because the ANCF results in nonlinear system of equations the FRF has to be
computed explicitly using direct numerical integration. It can be seen from the measured data that the
response of the belt-weight system is linear. This implies that the flexible multibody model of the experimental
setup should give a linear response. From the simulated displacement response of the weight and the applied
force we can compute the FRF using Eq. (19).

In Fig. 4 the measured and simulated FRFs are presented for different lengths of the belt segment. The good
agreement between the measured and simulated FRFs prove that material properties obtained using one-
degree-of-freedom model can be used in the nonlinear ANCF approach for modelling of the belt drives.

4.2. Transverse direction

In the transverse direction the displacement response is mainly governed by the bending deformations. In
this section we will present the identification of the bending rigidity modulus EI and the damping parameters
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a and b using a two-pulley belt-drive experimental setup. The simulated results are compared with
experimentally obtained data.

4.2.1. Identification of the bending rigidity modulus

The bending rigidity modulus EI of the belt can be determined from the free response of the belt span in
the transverse direction. The non-operating two-pulley belt drive is considered as shown in Fig. 5(a).
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The transverse displacement of the belt span is measured with two laser sensors positioned at the middle and
the quarter length of the belt span. Assuming that the damping is low the natural frequencies can be obtained
from the free response of the belt span. The ith measured natural frequency f

exp
0i can then be compared with

the calculated natural frequencies f 0i of a pre-tensioned pinned–pinned beam [1]:

f 0i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI

r
pi2

2L2
sp

 !2

þ
F

r
i

2Lsp

� �2

vuut , (20)

where i is the mode shape and r is the mass per unit length of the belt. The computation of the bending rigidity
modulus EI can be determined as a result of the optimization process in the least-squares sense:

min
EI

1

2

X
k

f 01ðEI ;F kÞ � f
exp
01 ðEI ;F kÞ

f 02ðEI ;F kÞ � f
exp
02 ðEI ;F kÞ

f 03ðEI ;F kÞ � f
exp
03 ðEI ;F kÞ

0
B@

1
CA

�������
�������
2

, (21)

where F k is the belt’s longitudinal force. Using Eq. (21) the optimized value is EI ¼ 9:6� 10�3 Nm2=rib.
In the experimental setup, the belt is wrapped around the pulley, which certainly has an influence on the

natural frequencies of the belt span. Hence, the proposed two-pulley belt-drive model (Fig. 5(b)) is used with
the ANCF and the belt is modelled using 32 beam elements. Because the finite-element formulation is
nonlinear the natural frequencies of the upper span cannot be obtained using implicit methods, but instead
have to be obtained explicitly using numerical integration. Numerical integration was preformed using
variable order Adams–Bashforth–Moulton method. To simulate the free response, the upper belt span is
initially displaced and then released from rest. Using this method the resulting optimized bending rigidity
modulus is EI ¼ 5:2� 10�3 Nm2=rib, and it is smaller than the one obtained using the analytical equation
(20). Wrapping the belt around the pulley increases the belt span’s natural frequency, which results in a lower
computed bending rigidity modulus. Because the advanced, flexible, multibody model of the two-pulley belt
drive is more realistic, the bending rigidity modulus obtained by this method is more accurate. In Table 2 the
experimentally obtained natural frequencies are compared to the frequencies obtained using the analytical
equation and using the advanced, flexible, multibody model.

4.2.2. Measurement of the damping ratio

For an alone belt span, the damping in the transverse direction is mainly governed by the damping of the
bending deformations. To identify the two parameters a and b of Rayleigh proportional damping the
experimental setup presented in Fig. 6 is proposed. The belt span is excited with the shaker at the left-hand end
of the belt span. The applied force is then measured with a force sensor and the transverse displacement with
laser sensors positioned at Lsp=4 and Lsp=6 from the right end. The belt is subjected to a random excitation
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Table 2

First three measured natural frequencies of the belt span in comparison with the numerical models.

F (N) Experimental natural-frequencies (Hz) Analytical model (Hz) Flexible multibody model (Hz)

f
exp
1 f

exp
2 f

exp
3 EI ¼ 9:6� 10�3 Nm2=rib EI ¼ 5:2� 10�3 Nm2=rib

f 1 f 2 f 3 f 1 f 2 f 3

198 45.3 90.5 135.7 44.3 89.7 137.4 44.9 89.8 138.6

297 54.5 109.3 163.8 53.2 107.4 163.5 54.6 109.3 164

396 62.5 125.4 188.1 61.4 123.7 187.6 62.5 125 187.5

495 69 138.3 207.3 68.6 138 209 70.3 138.6 208.9

594 76.1 153.4 228.4 75.1 151 228.2 76.1 152.3 228.5

693 82.1 164.3 246.5 81.2 163 246 82 164 248

shaker

push-rod belt

Fig. 6. Experimental setup for damping identification in the transverse direction.
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force. The experimental FRFs versus the belt’s longitudinal force, obtained using Eq. (19), are presented in
Fig. 7. The first three natural frequencies are the most representative, thus the corresponding damping ratios
will be used for the damping identification.

The damping ratios are identified using the circle-fitting method, as presented in Ref. [25]. By representing
the FRF on a Nyquist diagram we obtain an approximate circle around each natural frequency. The
computation of the modal parameters relies on the fitting of the circle to the frequency–response curve near
the natural frequency. When using this method the damping model is assumed to be hysteretic and the
damping factor is obtained using the following equation:

Zr ¼
f 2

a � f 2
b

f 2
r

1

tanðDyaÞ þ tanðDybÞ
, (22)

where Zr is the hysteretic damping loss factor and f r the natural frequency associated with the mode r. The f a

represents the frequencies above natural frequency and f b represents the frequencies below natural frequency.
In our case the damping model is viscous. For low damping the hysteretic damping ratio and the viscous
damping ratio are approximately related by 2x ¼ Z.

In Fig. 8(a) the Nyquist diagram around the second natural frequency is presented at the location Lsp=4 and
the belt longitudinal force 495N. It is possible to derive several values for Zr, depending on the pair of data
points that are used in Eq. (22). The results for Zr that depend on the frequencies f a and f b can be represented
as shown in Fig. 8(b). The best results are obtained when the angles Dya and Dyb are not very small and have
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similar values. Thus, the mean value can be obtained as a combination of the data points corresponding to the
diagonal of the x surface represented in Fig. 8(b).

Using the above-mentioned method the damping ratios computed at positions Lsp=4 and Lsp=6 are
presented in Table 3. It was observed that measuring the damping ratio at different locations on the belt’s span
has practically no influence.
4.2.3. Identification of the Rayleigh parameters

The Rayleigh parameters a and b are identified using the previously measured damping ratios. Because the
finite-element formulation results in a nonlinear longitudinal stiffness matrix the orthogonal properties cannot
be used for the computation of the parameters a and b. In order to identify these two parameters, an
optimization procedure is proposed. The simulated response is obtained using the belt-drive model presented
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Table 3

Measured damping ratios corresponding to the first three modes.

F (N) Damping ratio at Lsp=4 Damping ratio at Lsp=6

x1 x2 x3 x1 x2 x3

198 0.007 0.017 0.017 0.006 0.016 0.016

297 0.005 0.014 0.015 0.006 0.014 0.014

396 0.004 0.013 0.008 0.005 0.012 0.008

495 0.004 0.010 0.008 0.004 0.010 0.008

594 0.005 0.010 0.007 0.005 0.010 0.008

693 0.003 0.008 0.008 0.004 0.009 0.008

37mm

F(t)-excitation
force

R= 0.027m

measuring
displacement

Lsp/4 Lsp/6

0.515msp

Fig. 9. Flexible multibody model for the identification of the damping parameters.
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in Fig. 9. The belt is excited with a random force applied at the same position as in the experimental setup. The
mass of the mounting plate and the transducer base is approximately 20 g, and it is not negligible compared to
the belt-span mass of 49 g. Therefore, it has to be accounted for in the belt-drive model as a rigid body
attached to the belt.

From the simulated displacement response and the known excitation force we can obtain the FRF using Eq.
(19). From the FRF the damping ratio can be estimated and the damping parameters a and b can be obtained
using the following optimization process:

min
a;b

1

2

X
k

x1ða;b;F kÞ � xexp1 ðFkÞ

x2ða;b;F kÞ � xexp2 ðFkÞ

x3ða;b;F kÞ � xexp3 ðFkÞ

0
B@

1
CA

�������
�������
2

, (23)

where xi is the damping ratio obtained from the simulated FRF corresponding to the mode i. Similarly, xexpi is
the damping ratio obtained from the experimental FRF corresponding to the mode i. The computed,
optimized damping parameters are, in our case, equal to a ¼ 2:8=s and b ¼ 1:8� 10�4 s.
4.2.4. Comparison of the simulations and the experiments

The optimized material properties of Table 4 are used to obtain the predicted damping ratio values which
are then compared to the measured ones, see Fig. 10. The damping ratios corresponding to the first and third
modes are in good agreement. However, some difference appears for the second mode damping ratios
especially at low longitudinal forces. This is probably due to some internal friction in the material, not taken
into account in our model.
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Table 4

Belt-drive parameters.

Parameter Symbol Value

Radius of the pulley R 0.027m

Pulley central distance Lsp 0.515m

Friction coefficient m0 1.2

Mass per unit length r 0.096 kg/m

Mass of mounting and transducer base mt 20 g

Longitudinal stiffness EA 30400N/rib

Damping loss factor cA 4.1N s/rib

Bending rigidity modulus EI 5:2� 10�3 Nm2=rib
Rayleigh parameter a 2.8/s

Rayleigh parameter b 1:8� 10�4 s

200 300 400 500 600 700 800
0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Fig. 10. Comparison between the damping ratio obtained from the measurement and from the simulation. (—�—) first mode—

experiment, (- -�- -) first mode—simulation, (—�—) second mode—experiment, (- -�- -) second mode—simulation, (—�—) third mode—

experiment, (- -�- -) third mode—simulation.
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In Fig. 11 the experimentally and numerically obtained FRFs are compared at positions Lsp=4 and Lsp=6 for
two different longitudinal forces. The simulated FRF is obtained using the flexible multibody model presented
in Fig. 9. It can be seen that the agreement between the simulated and the experimental results is good, even at
frequencies that are higher than the third natural frequency. Finally, we can conclude that the flexible,
multibody, belt-drive model proposed in this study is appropriate for the modelling of belt drives, which was
proven with the comparison with the experimental data.

The effect of the transducer base’s mass and the mounting plate’s mass is presented in Fig. 12. Simulated
FRFs, obtained using the flexible, multibody belt drive are compared with the experimentally obtained FRF.
It can be seen that when neglecting the mass the natural frequencies above the first mode are shifted to the left.
However, the mass has practically no influence on the first natural frequency.

5. Conclusion

In this paper a belt-drive model using the ANCF is presented and a verification study was performed. The
belt is modelled using beam elements and includes the damping forces. When modelling the longitudinal
deformations the internal damping model is used, and in the case of bending deformations Rayleigh’s
proportional damping is applied. The discontinuous friction law is used for the frictional contact between the
belt and the pulley. The contact is formulated as an LCP. In order to identify the damping parameters and
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Fig. 11. Comparison between the experimentally and the numerically obtained FRFs: (a) measurement location Lsp=4, longitudinal force
F ¼ 396N; (b) measurement location Lsp=6, longitudinal force F ¼ 396N; (c) measurement location Lsp=4, longitudinal force F ¼ 693N;

(d) measurement location Lsp=6, longitudinal force F ¼ 693N. (- - -) experiment, (—) simulation.
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Fig. 12. Comparison between the measurement and the flexible, multibody, belt-drive model with or without additional mass: (a)

measurement location Lsp=4, longitudinal force F ¼ 594N; (b) measurement location Lsp=6, longitudinal force F ¼ 594N. (- - -)

experiment, (—) simulation with additional mass, (- � -) simulation without additional mass.
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other material properties several experiments were conducted. The belt’s longitudinal stiffness and the
damping loss factor were identified from the free response of the belt-weight system. Good agreement was
found between the experimentally obtained results and the simulations. The bending rigidity modulus and the
Rayleigh parameters describing the damping of the bending deformations were identified using a two-pulley
belt-drive system. From the free response of the belt span the bending rigidity modulus was deduced. The
Rayleigh parameters were identified from the forced response of the belt span. Finally, the experimentally
obtained data were incorporated into a two-pulley belt-drive numerical model and compared with the
experimental data. Good agreement was obtained. We also presented the pinned–pinned beam for the
modelling of the belt span and compared it with our model and the experimental data.

Although the material parameters were identified for a non-operating two-pulley belt-drive system, the
presented model is general. It can be used for modelling belt drives with several pulleys and tensioner pulleys
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in arbitrary operating conditions. So in future work the applicability of the presented belt-drive model should
be tested when operational belt drives are considered.
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